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WAVELET DOMAIN IMAGE INTERPOLATION VIA STATISTICAL ESTIMATION

Ying Zhu

Stuart C. Schwartz

Michael T. Orchard

Electrical Engineering, Princeton University
Princeton, NJ 08544

ABSTRACT

We propose a new wavelet domain image interpolation
scheme based on statistical signal estimation. A linear
composite MM SE estimator is constructed to synthesize
the detailed wavelet coefficients as well as to minimize
the mean squared error for high-resolution signal
recovery. Based on a discrete time edge model, we use
low-resolution information to characterize local intensity
changes and perform resolution  enhancement
accordingly. A liner MMSE estimator follows to
minimize the estimation error. Local image statistics are
involved in determining the spatially adaptive optimal
estimator. With knowledge of edge behavior and local
signal statistics, the composite estimation is able to
enhance important edges and to maintain the intensity
consistency along edges. Strong improvement in both the
visual quality and the PSNRs of the interpolated images
has been achieved by the proposed estimation scheme.

1. INTRODUCTION

Image interpolation involves the problem of resolution
enhancement, i.e. recovering a high-resolution image
from its smoothed version. In low-resolution images, the
lost high-frequency components associated with strong
intensity changes are the main information to recover.
Strong intensity discontinuity conveys substantial visual
information because it often happens around various
edges produced by object boundaries. Therefore, how to
process the intensity changes around strong edges is the
central issue for the interpolation problem.

Classic bilinear and bicubic interpolation methods
impose a continuity constraint over the entire image and
tend to produce oversmoothed edges. They also implicitly
assume that a low-resolution image consists of samples
from its high-resolution version, which is not true when
the imaging sensor has a spatial averaging characteristic
over the sampling lattice. Edge adaptive interpolation
schemes [1,2] perform the interpolation in selective
directions to avoid smoothing across edges, with extra
efforts made to deal with edge related artifacts due to

Thiswork was partly supported by the ARO grant DAAHO4961-0227 and the NSF grant
MIP 9896035.

imprecise edge positions and smoothness assumed for the
high-resolution image. Wavelet based methods [3,4] take
advantage of local signal smoothness (Holder regularity)
observed through multiple scales [5] and actively enhance
the high frequency contents. However, the general
mathematical conclusion involved is obtained by
analyzing continuous signals. When interpolating discrete
time signal's, ambiguities about the locations and the signs
of the extrapolated highband coefficients would arise.

In this work, we propose a new wavelet domain
interpolation scheme that explicitly fills in important
detailed coefficients to recover the high-resolution image.
In contrast to other wavelet domain interpolation
methods, we formulate interpolation as a statistical signal
estimation problem, i.e. we want to estimate the high-
resolution image using the statistical information of the
low-resolution signals. We aso characterize edge
behavior by a parameterized discrete time signa to
accurately locate edges from low-resolution samples. A
linear composite minimum-mean-squared-error (MM SE)
estimator is proposed to solve the estimation problem.
The composite estimation involves a parametric edge
model and local image atistics. First, local edge
behavior is determined from the low-resolution samples
and used to synthesize the detailed coefficients. Then, a
linear estimator minimizes the estimation error using local
statistical information of the enhanced signals. Both
analysis and experiments revea that the knowledge of
edge behavior and local image dtatistics enable the
composite estimator to enhance the cross-edge sharpness
and maintain the intensity consistency along edges, which
are essential for high image quality.

In the following sections, we start by characterizing
edge behavior under lowpass filtering, and then derive the
optimal MM SE estimator for image interpolation. Finally
we show the experimental results which demonstrate the
strength of the statistical approach.

2. WAVELET TRANSFORM AND EDGE
BEHAVIOR

Figure 1 illustrates a 1D discrete wavelet transform with
analysis filters  ({h(n)}.{g(n)})and synthesis filters

({ﬁ(n)},{@(n)}). Discrete time signal f is decomposed
and down-sampled to produce two subband signals, the
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lowpass scaling coefficients fs and highpass detailed

Figurel. 1D Wavelet transform

coefficients fy. The synthesis process gives exact
reconstruction of f. Wavelet transform on 2D images can
be realized by separate 1D transforms on image rows and
columns.

To characterize edge behavior under lowpass
filtering, we adopt (1) as the underlying continuous edge
model, which assumes the ideal step function for real
object boundaries and a Gaussian point spread function
for the acquisition system [6].

&tic, A0) = c+§(1+erf (ﬁ)) )

t
Hereerf (t) = (2/+/7r)f exp(-x? / 2)dx . With a normalized
0

sampling rate, the corresponding discrete time edge
model is parameterized as

2
0'

where (A, o, d) indicate the edge strength, transition speed
and sampling bias, and c indicates the base intensity.

Let a discrete time edge signa f(n;c,Ap,d) be
smoothed with lowpass filter { h(n)} and downsampled by
2, the low resolution signal fs still appears in the shape of
a dightly modified edge as we expect. However, if we
also alow the detailed signal fy to be produced through
highpass filter {g(n)} and downsampling, we observe the
important fact that for sharp edges with small 4, besides
the apparent dependence on A and o, the local detailed
coefficientsin fy al'so change dramatically and nonlinearly
as the sampling bias d changes. Figure 2 (b)-(c) illustrates
the effect with ¢ set to 1 and b set to 0 and 0.5
respectively. Two facts about edge behavior are used in
the following analysis. First, a strong intensity change in
the high-resolution signal causes a strong intensity change
at the corresponding location in the low-resolution signal.
Second, the knowledge of edge parameters (A, o, d) are
sufficient for determining the local detailed coefficients.

Now we consider f to be the unknown 1D discrete
time signal taken from an entire row or column of a high-
resolution image and assume f can be approximated as the
composite signal of a number of local edges at different
spatial locations

n—di
3
\/—)) ©)

Suppose that only the smoothed signal fs is available. To
recover the significant detailed coefficients of f4, our basic

f(n) = c+Z—(1+ erf (

idea is to obtain an estimate of local edge parameters (A;,

ct+ A Aen .................................
C+A/2
C [eoo-o
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Figure 2. (a) Discrete time edge model; (b)-(c)
Scaling coefficients f and detailed coefficients
fg. (b) 0=1, b=0; (c) 6=1, b=0.5.

o, d) from the low-resolution signal f; and use this
information to fill in the important coefficients of fg.

3.MMSE ESTIMATOR FOR IMAGE
INTERPOLATION

We formulate image interpolation as an estimation
problem, i.e. given the low-resolution image samples
{fs(x,y)}, we want to estimate the high-resolution samples
{f(x,y)}. To simplify the analysis, here we only consider
the problem of resolution enhancement in one direction.
To achieve complete resolution enhancement, we apply
the interpolation scheme twice. First we interpolate the
image horizontally, and then we apply the same scheme
vertically to the horizontally interpolated image. Let f,
denote the to-be-interpolated high-resolution image row
with vertical index y. fs,denotesthey_throw in the low-
resolution image and fy, denotes the y_th row of the
unknown detailed coefficients. Figure 3 helps to illustrate
the notation. In particular, we consider the estimation of
fy(x), the high-resolution image pixel indexed by (xy).
Under the minimum-mean-squared-error (MMSE)
criterion [7], the optimal estimator for f,(x) is given by the
following conditional mean

f () =E[f,(x) | fsy+ ik =0£L--£M]  (4)

In practice, strong correlation exits only in local image
region, so M can be set small. Direct evaluation of (4)
requires the knowledge of joint distribution of f, and
{fsy«d. This is difficult to obtain when f, is unknown.
Consequently, we propose the following linear composite
MM SE estimator as areplacement,

9= 3 acElf,00]fyud+C ()
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where g, and C are scaars. Denote Fy" =E[f, | fs y+«]

with f5(n) = E[f,(n) | fsy+K], we rewrite (5) as

f,09 = k:“ﬁM 8 DT +C 6)
The estimator is implemented in two steps. First, f, is
estimated as Fyk using the information from the k_th
neighboring row fs . in the low-resolution image. We
call this step the estimate by rowlt involves the use of

1D edge model. Then alinear MM SE estimator estimates
fy(x) by minimizing the mean-square-error(M SE) over the

M -~
linear class Y a, Cf (X) + C . Second order statistics of
k=-M

Tk . . Ly .
f, areinvolved infinding optimal valuesfor {ag} and C.

3.1. Estimate by row

The synthesis of f, is given by

fy=(fsy 1 20 +(fg, 1 2)*g (7
where 1 2 denotes the linear operation of upsampling by
2, so we have

fy = (foy 1 20N +(Elfyy | foyud 1 20F ()
We apply the ideas discussed in section 2 and solve the
estimate f4, = E[fy, | fo .. Assume the Kk _th
neighboring row f,, can be approximated as the
composite signal  of a number of edges
c+xi A(L+erf((n-d;)/V20,))/ 2. Around d; there is an
edge segment crossing row fy, that causes the local
intensity change on fy.« as f,, (n)=¢e(n;c;,A,0;,d;).
Then the k_th neighboring row fs,.(n) in the low-

resolution image fs has a local intensity change around d;
/2 as

Enh(m) [&(2n-mc, A,0,,d) 9)
So the parameters (¢, A,0,,d;) can be estimated from
fsy+around d; /2 by solving the least square (LS) problem
agmin > | f, ., (n)-zh(me2n-mc,A,0,d) [
(c,Ad,0) nON(d; /2) m

(10)
Once the LS estimates(c,A,o,,d;)are obtained, we
estimate the direction of the edge segment crossing row
fy+. Asillustrated in figure 3, we use the edge segment
foyrri (M) =Zmh(M) [&(2n-mic, A, 0;,d - j/tan(8)) (11)
to match the local pixels around (di/2,y+K) in fs and
determine the edge orientation 6;. Then the estimates of
detailed coefficients around di/2 in g, is given by

gy (N) = Zng(m) B(2n-mc, A,0,,d, +k/tan(6)) (12)
The estimate-by-row step is summarized as follows:

1. Check the k_th neighboring row fsy. of the low-
resolution image. If a strong intensity change is found

d  g+k/tan(®)
foy1(fay-)o—-e--o--o--oy-1 .+;‘\£. -o-0-0 fy.1
fsy(fay) ¢--0--0-—o-0y eee \\oo—to—o fy
foye1(faye)o——0—-0-—o--0 y+10-o—o-o—§§2ito—o fye1

foyi (fay+d fyat
Figure 3. Interpolation lattice

at some location, perform the LS estimation in (9) to
obtain the local edge parameters(c,A,o0;,d,). Use
(10) to estimate edge orientation 6;,

2. Use (12) to synthesize the detailed coefficientsin Fd"y

around d, /2. Then use (8) to obtain the estimate f.".
3. Apply the same procedure to each row of the image.
For every row f,, we obtain (2M+1) high-resolution
estimates-by- row, f,=E[f, | f ] (k=—M,...M).
Based on the family of parametric edge models, the
estimate-by- row implements a nonlinear estimator for the
high-resolution signal using partial information from the
low-resolution signal. As we will see, resolution

enhancement around strong edges is achieved by the
estimates.

3.2. Linear MM SE

The linear MMSE (6) finds the optima linear
combination of the estimates-by-row that minimizes the
estimation MSE. Only first and second order statistics of

Fyk are involved to solve the optimal {a,} and C[7],

C=E[f,()]- 3 a E[T} ()]
_ k=-M _ _ (13)
Coy( f,(x), (X)) = j:%M a;Cov( ) (), f, (X))

where Co([I) denotes covariance function. The following
facts are easily verified:

E f, (9] = E[f, ()]

Cou f, (%), Ty (x) = Cou Ty (x), ' (x))
Denote  Ciy(j.k) = Cou(f/ (x), f(x)). (14) allows
{ag and C to be solved by 2M+2 linear equations,
Coryy (K, K) = j}_M 3,Cpy (i k) (K=0£L---£M)

(14

. (15)
C=(- X aJElf,(x)]

and E[f,(x)] be evaluated asE[ f, (x)] = —

> TR
2M +1 k=-M
Ciy(,K) is adaptively evaluated using the neighboring

pixels around (x,y) in { f,(X)},
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(10 = TR e 00~ EL 0D

) —ELf, (D] (j.k=021-M)
The linear MM SE estimate is summarized as follows:
1. For sample (x,y), evaluate the local statistics E[fy(X)]

and Cyyyk,) using the estimates { f,*(x)} in the local

region. Solve (15) to get optimal {a} and C. Use (6) to
compute the composite estimate of f(x,y).
2. Apply the same procedure to every samplein f.

The linear MMSE estimator combines the estimate
results by partial information in an optimal way such that
the estimation MSE is minimized. This estimator imposes
spatially adaptive filtering on signals interpolated with
partial information and subsequently assures the intensity
consistency along the locally enhanced edges.

4. EXPERIMENT RESULTS

We applied the linear composite MMSE estimation
algorithm to image interpolation. Compared with bilinear
and bicubic schemes, the MMSE estimation scheme
produces clearer boundaries in the interpolated images. In
addition to sharpening strong edges, the linear estimation
step assures the intensity consistency along edges and
avoids unnecessary artifacts around enhanced edges.

Figure 4 shows the example of a subregion from the
interpolated Lenaimage by different methods, where the
image is interpolated to four times the original size. Since
the wavelet coefficient synthesis deals with sparsely
located strong edges, as we expect, the improvement of
the visual quality is more obvious in the regions
containing strong edges than in the regions with many
weak edges such as in textures. In Table 1, we show an
example of the PSNR improvement by the proposed
estimation approach with M set to 1. The numbers were
obtained from interpolating the smoothed Lenaimage to 2
and 4 times the size. The full size (512x512) image was
first smoothed by the lowpass filter and downsampled.
Then the smoothed image was interpolated to full size and
compared with the original image. A 4~5dB gain is
achieved by the proposed estimation algorithm.

5. CONCLUSIONS

In this work, we used signa estimation techniques to
solve the interpolation problem. We proposed a linear
composite MM SE estimator to recover the fine-resolution
image from the low-resolution samples. An edge model
based nonlinear estimator synthesizes the important
detailed coefficients with partial information obtained
from low-resolution samples. A standard linear estimator
then minimizes the MSE of the recovered image using
knowledge of local statistics of previousy estimated
signals. Subsequently, strong edges are enhanced by the

model based coefficient synthesis while the intensity
consistency along edges is maintained by the subsequent
linear estimator. The interpolation results demonstrate the
strength of the statistical approach in achieving better
image quality and better signal estimation. Further study
includes extending the statistical analysis to the problem
of multiscale image modeling.

(©)
Figure 4. Images produced by different
interpolation methods. (a) Bilinear; (b) Bicubic;
(c) Linear composite MM SE estimator.

Method x 2 (dB) x 4 (dB)
Bilinear 28.84 23.35
Bicubic 29.11 23.26
Proposed 33.78 28.56

Table 1. PSNR comparison of different
interpolation methods
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